Abstract
The massive growth in the scale of data has been observed in recent years being a key factor of the Big Data scenario. Big Data can be defined as high volume, velocity and variety of data that require a new high-performance processing. Addressing big data is a challenging and time-demanding task that requires a large computational infrastructure to ensure successful data processing and analysis. The presence of data preprocessing methods for data mining in big data is reviewed in this paper. The definition, characteristics, and categorization of data preprocessing approaches in big data are introduced. The connection between big data and data preprocessing throughout all families of methods and big data technologies are also examined, including a review of the state-of-the-art. In addition, research challenges are discussed, with focus on developments on different big data framework, such as Hadoop, Spark and Flink and the encouragement in devoting substantial research efforts in some families of data preprocessing methods and applications on new big data learning paradigms.If you are looking for Bigdata and hadoop training please visit:big data hadoop training
Background
Vast amounts of raw data is surrounding us in our world, data that cannot be directly treated by humans or manual applications. Technologies as the World Wide Web, engineering and science applications and networks, business services and many more generate data in exponential growth thanks to the development of powerful storage and connection tools. Organized knowledge and information cannot be easily obtained due to this huge data growth and neither it can be easily understood or automatically extracted. These premises have led to the development of data science or data mining , a well-known discipline which is more and more present in the current world of the Information Age.
Nowadays, the current volume of data managed by our systems have surpassed the processing capacity of traditional systems [2], and this applies to data mining as well. The arising of new technologies and services (like Cloud computing) as well as the reduction in hardware price are leading to an ever-growing rate of information on the Internet. This phenomenon certainly represents a “Big” challenge for the data analytics community. Big Data can be thus defined as very high volume, velocity and variety of data that require a new high-performance processing
Distributed computing has been widely used by data scientists before the advent of Big Data phenomenon. Many standard and time-consuming algorithms were replaced by their distributed versions with the aim of agilizing the learning process. However, for most of current massive problems, a distributed approach becomes mandatory nowadays since no batch architecture is able to tackle these huge problems.
Many platforms for large-scale processing have tried to face the problematic of Big Data in last years . These platforms try to bring closer the distributed technologies to the standard user (enginners and data scientists) by hiding the technical nuances derived from distributed environments. Complex designs are required to create and maintain these platforms, which generalizes the use of distributed computing. On the other hand, Big Data platforms also requires additional algorithms that give support to relevant tasks, like big data preprocessing and analytics. Standard algorithms for those tasks must be also re-designed (sometimes, entirely) if we want to learn from large-scale datasets. It is not trivial thing and presents a big challenge for researchers.
The first framework that enabled the processing of large-scale datasets was MapReduce (in 2003). This revolutionary tool was intended to process and generate huge datasets in an automatic and distributed way. By implementing two primitives, Map and Reduce, the user is able to use a scalable and distributed tool without worrying about technical nuances, such as: failure recovery, data partitioning or job communication. Apache Hadoop emerged as the most popular open-source implementation of MapReduce, maintaining the aforementioned features. In spite of its great popularity, MapReduce (and Hadoop) is not designed to scale well when dealing with iterative and online processes, typical in machine learning and stream analytics .
Apache Spark was designed as an alternative to Hadoop, capable of performing faster distributed computing by using in-memory primitives. Thanks to its ability of loading data into memory and re-using it repeatedly, this tool overcomes the problem of iterative and online processing presented by MapReduce. Additionally, Spark is a general-purpose framework that thanks to its generality allows to implement several distributed programming models on top of it (like Pregel or HaLoop) . Spark is built on top of a new abstraction model called Resilient Distributed Datasets (RDDs). This versatile model allows controlling the persistence and managing the partitioning of data, among other features.
Some competitors to Apache Spark have emerged lastly, especially from the streaming side . Apache Storm is an open-source distributed real-time processing platform, which is capable of processing millions of tuples per second and node in a fault-tolerant way. Apache Flink is a recent top-level Apache project designed for distributed stream and batch data processing. Both alternatives try to fill the “online” gap left by Spark, which employs a mini-batch streaming processing instead of a pure streaming approach.
The performance and quality of the knowledge extracted by a data mining method in any framework does not only depends on the design and performance of the method but is also very dependent on the quality and suitability of such data. Unfortunately, negative factors as noise, missing values, inconsistent and superfluous data and huge sizes in examples and features highly influence the data used to learn and extract knowledge. It is well-known that low quality data will lead to low quality knowledge . Thus data preprocessing is a major and essential stage whose main goal is to obtain final data sets which can be considered correct and useful for further data mining algorithms.
Big Data also suffer of the aforementioned negative factors. Big Data preprocessing constitutes a challenging task, as the previous existent approaches cannot be directly applied as the size of the data sets or data streams make them unfeasible. In this overview we gather the most recent proposals in data preprocessing for Big Data, providing a snapshot of the current state-of-the-art. Besides, we discuss the main challenges on developments in data preprocessing for big data frameworks, as well as technologies and new learning paradigms where they could be successfully applied.
Data preprocessing
The set of techniques used prior to the application of a data mining method is named as data preprocessing for data mining and it is known to be one of the most meaningful issues within the famous Knowledge Discovery from Data process as shown in Fig. 1. Since data will likely be imperfect, containing inconsistencies and redundancies is not directly applicable for a starting a data mining process. We must also mention the fast growing of data generation rates and their size in business, industrial, academic and science applications. The bigger amounts of data collected require more sophisticated mechanisms to analyze it. Data preprocessing is able to adapt the data to the requirements posed by each data mining algorithm, enabling to process data that would be unfeasible otherwise.
Albeit data preprocessing is a powerful tool that can enable the user to treat and process complex data, it may consume large amounts of processing time . It includes a wide range of disciplines, as data preparation and data reduction techniques as can be seen in Fig. 2. The former includes data transformation, integration, cleaning and normalization; while the latter aims to reduce the complexity of the data by feature selection, instance selection or by discretization (see Fig. 3). After the application of a successful data preprocessing stage, the final data set obtained can be regarded as a reliable and suitable source for any data mining algorithm applied afterwards.
Data preprocessing is not only limited to classical data mining tasks, as classification or regression. More and more researchers in novel data mining fields are paying increasingly attention to data data preprocessing as a tool to improve their models. This wider adoption of data preprocessing techniques is resulting in adaptations of known models for related frameworks, or completely novel proposals.
In the following we will present the main fields of data preprocessing, grouping them by their types and showing the current open challenges relative to each one. First, we will tackle the preprocessing techniques to deal with imperfect data, where missing values and noise data are included. Next, data reduction preprocessing approaches will be presented, in which feature selection and space transformation are shown. The following section will deal with instance reduction algorithms, including instance selection and prototype generation. The last three section will be devoted to discretization, resampling for imbalanced problems and data preprocessing in new fields of data mining respectively.
Imperfect data
Most techniques in data mining rely on a data set that is supposedly complete or noise-free. However, real-world data is far from being clean or complete. In data preprocessing it is common to employ techniques to either removing the noisy data or to impute (fill in) the missing data. The following two sections are devoted two missing values imputation and noise filtering.
Missing values imputation
One big assumption made by data mining techniques is that the data set is complete. The presence of missing values is, however, very common in the acquisition processes. A missing value is a datum that has not been stored or gathered due to a faulty sampling process, cost restrictions or limitations in the acquisition process. Missing values cannot be avoided in data analysis, and they tend to create severe difficulties for practitioners.
Missing values treatment is difficult. Inappropriately handling the missing values will easily lead to poor knowledge extracted and also wrong conclusions . Missing values have been reported to cause loss of efficiency in the knowledge extraction process, strong biases if the missingness introduction mechanism is mishandled and severe complications in data handling.
Many approaches are available to tackle the problematic imposed by the missing values in data preprocessing . The first option is usually to discard those instances that may contain a missing value. However, this approach is rarely beneficial, as eliminating instances may produce a bias in the learning process, and important information can be discarded . The seminal works on data imputation come from statistics. They model the probability functions of the data and take into account the mechanisms that induce missingness. By using maximum likelihood procedures, they sample the approximate probabilistic models to fill the missing values. Since the true probability model for a particular data sets is usually unknown, the usage of machine learning techniques has become very popular nowadays as they can be applied avoiding without providing any prior information.
Noise treatment
Data mining algorithms tend to assume that any data set is a sample of an underlying distribution with no disturbances. As we have seen in the previous section, data gathering is rarely perfect, and corruptions often appear. Since the quality of the results obtained by a data mining technique is dependent on the quality of the data, tackling the problem of noise data is mandatory . In supervised problems, noise can affect the input features, the output values or both. When noise is present in the input attributes, it is usually referred as attribute noise. The worse case is when the noise affects the output attribute, as this means that the bias introduced will be greater. As this kind of noise has been deeply studied in classification, it is usually known as class noise.
In order to treat noise in data mining, two main approaches are commonly used in the data preprocessing literature. The first one is to correct the noise by using data polishing methods, specially if it affects the labeling of an instance. Even partial noise correction is claimed to be beneficial , but it is a difficult task and usually limited to small amounts of noise. The second is to use noise filters, which identify and remove the noisy instances in the training data and do no require the data mining technique to be modified.
Dimensionality reduction
When data sets become large in the number of predictor variables or the number of instances, data mining algorithms face the curse of dimensionality problem . It is a serious problem as it will impede the operation of most data mining algorithms as the computational cost rise. This section will underline the most influential dimensionality reduction algorithms according to the division established into Feature Selection (FS) and space transformation based methods.
Feature selection
Feature selection (FS) is “the process of identifying and removing as much irrelevant and redundant information as possible” . The goal is to obtain a subset of features from the original problem that still appropriately describe it. This subset is commonly used to train a learner, with added benefits reported in the specialized literature . FS can remove irrelevant and redundant features which may induce accidental correlations in learning algorithms, diminishing their generalization abilities. The use of FS is also known to decrease the risk of over-fitting in the algorithms used later. FS will also reduce the search space determined by the features, thus making the learning process faster and also less memory consuming.
The use FS can also help in task not directly related to the data mining algorithm applied to the data. FS can be used in the data collection stage, saving cost in time, sampling, sensing and personnel used to gather the data. Models and visualizations made from data with fewer features will be easier to understand and to interpret.
Space transformations
FS is not the only way to cope with the curse of dimensionality by reducing the number of dimensions. Instead of selecting the most promising features, space transformation techniques generate a whole new set of features by combining the original ones. Such a combination can be made obeying different criteria. The first approaches were based on linear methods, as factor analysis and PCA .
More recent techniques try to exploit nonlinear relations among the variables. Some of the most important, both in relevance and usage, space transformation procedures are LLE , ISOMAP and derivatives. They focus on transforming the original set of variables into a smaller number of projections, sometimes taking into account the geometrical properties of clusters of instances or patches of the underlying manifolds.To more info visit:big data hadoop online training
Instance reduction
A popular approach to minimize the impact of very large data sets in data mining algorithms is the use of Instance Reduction (IR) techniques. They reduce the size of the data set without decreasing the quality of the knowledge that can be extracted from it. Instance reduction is a complementary task regarding FS. It reduces the quantity of data by removing instances or by generating new ones. In the following we describe the most important instance reduction and generation algorithms.
Instance selection
Nowadays, instance selection is perceived as necessary . The main problem in instance selection is to identify suitable examples from a very large amount of instances and then prepare them as input for a data mining algorithm. Thus, instance selection is comprised by a series of techniques that must be able to choose a subset of data that can replace the original data set and also being able to fulfill the goal of a data mining application . It must be distinguished between instance selection, which implies a smart operation of instance categorization, from data sampling, which constitutes a more randomized approach .
A successful application of instance selection will produce a minimum data subset that it is independent from the data mining algorithm used afterwards, without losing performance. Other added benefits of instance selection is to remove noisy and redundant instances (cleaning), to allow data mining algorithms to operate with large data sets (enabling) and to focus on the important part of the data (focusing).
Instance generation
Instance selection methods concern the identification of an optimal subset of representative objects from the original training data by discarding noisy and redundant examples. Instance generation methods, by contrast, besides selecting data, can generate and replace the original data with new artificial data. This process allows it to fill regions in the domain of the problem, which have no representative examples in original data, or to condensate large amounts of instances in less examples. Instance generation methods are often called prototype generation methods, as the artificial examples created tend to act as a representative of a region or a subset of the original instances .
The new prototypes may be generated following diverse criteria. The simplest approach is to relabel some examples, for example those that are suspicious of belonging to a wrong class label. Some prototype generation methods create centroids by merging similar examples, or by first merging the feature space in several regions and then creating a set of prototype for each one. Others adjust the position of the prototypes through the space, by adding or substracting values to the prototype’s features.
Discretization
Data mining algorithms require to know the domain and type of the data that will be used as input. The type of such data may vary, from categorical where no order among the values can be established, to numerical data where the order among the values there exist. Decision trees, for instance, make split based on information or separability measures that require categorical values in most cases. If continuous data is present, the discretization of the numerical features is mandatory, either prior to the tree induction or during its building process.
Discretization is gaining more and more consideration in the scientific community and it is one of the most used data preprocessing techniques. It transforms quantitative data into qualitative data by dividing the numerical features into a limited number of non-overlapped intervals. Using the boundaries generated, each numerical value is mapped to each interval, thus becoming discrete. Any data mining algorithm that needs nominal data can benefit from discretization methods, since many real-world applications usually produce real valued outputs. For example, three of the ten methods considered as the top ten in data mining need an external or embedded discretization of data: C4.5 , Apriori and Naïve Bayes In these cases, discretization is a crucial previous stage.
Discretization also produce added benefits. The first is data simplification and reduction, helping to produce a faster and more accurate learning. The second is readability, as discrete attributes are usually easier to understand, use and explain . Nevertheless these benefits come at price: any discretization process is expected to generate a loss of information. Minimizing this information loss is the main goal pursused by the discretizer, but an optimal discretization is a NP-complete process. Thus, a wide range of alternatives are available in the literature as we can see in some published reviews on the topic .
Imbalanced learning. Undersampling and oversampling methods
In many supervised learning applications, there is a significant difference between the prior probabilities of different classes, i.e., between the probabilities with which an example belongs to the different classes of the classification problem. This situation is known as the class imbalance problem . The hitch with imbalanced datasets is that standard classification learning algorithms are often biased towards the majority class (known as the “negative” class) and therefore there is a higher misclassification rate for the minority class instances (called the “positive” examples).
While algorithmic modifications are available for imbalanced problems, our interest lies in preprocessing techniques to alleviate the bias produced by standard data mining algorithms. These preprocessing techniques proceed by resampling the data to balance the class distribution. The main advantage is that they are independent of the data mining algorithm applied afterwards.
Two main groups can be distinguished within resampling. The first one is undersampling methods, which create a subset of the original dataset by eliminating (majority) instances. The second one is oversampling methods, which create a superset of the original dataset by replicating some instances or creating new instances from existing ones.
Non-heuristic techniques, as random-oversampling or random-undersampling were initially proposed, but they tend to discard information or induce over-fitting. Among the more sophisticated, heuristic approaches, “Synthetic Minority Oversampling TEchnique” (SMOTE) has become one of the most renowned approaches in this area. It interpolates several minority class examples that lie together. Since SMOTE can still induce over-fitting in the learner, its combination with a plethora of sampling methods can be found in the specialized literature with excellent results. Under-sampling has the advantage of producing reduced data sets, and thus interesting approaches based on neighborhood methods, clustering and even evolutionary algorithms have been successfully applied to generate quality balanced training sets by discarding majority class examples.
Data preprocessing in new data mining fields
Many data preprocessing methods have been devised to work with supervised data, since the label provides useful information that facilitates data transformation. However, there are also preprocessing approaches for unsupervised problems.
For instance, FS has attracted much attention lately for unsupervised problems or missing values imputation . Semisupervised classification, which contains instances both labeled and unlabeled, also shows several works in preprocessing for discretization , FS , instance selection or missing values imputation . Multi-label classification is a framework prone to gather imbalanced problems. Thus, methods for re-sampling these particular data sets have been proposed . Multi-instance problems are also challenging, and resampling strategies have been also studied for them . Data streams are also a challenging area of data mining, since the information represented may change with time. Nevertheless, data streams are attracting much attention and for instance preprocessing approaches for imputing missing values FS and IR have been recently proposed.
Big data preprocessing
This section aims at detailing a thorough list of contributions on Big Data preprocessing. Table 1 classifies these contributions according to the category of data preprocessing, number of features, number of instances, maximum data size managed by each algorithm and the framework under they have been developed. The size has been computed multiplying the total number features by the number of instances (8 bytes per datum). For sparse methods , only the non-sparse cells have been considered. Figure 4 depicts an histogram of the methods using the size variable. It can be observed as most of methods have only been tested against datasets between zero an five gigabytes, and few approaches have been tested against truly large-scale datasets.If you are intrested for online training visit:big data and hadoop online training
0 Comments:
Post a Comment